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Complementarity of Structure Ensembles
in Protein-Protein Binding

of biomolecular interaction. However, the free (unbound)
receptor and ligand structures are often much less com-
plementary and show significant deviations from their
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Institut Pasteur bound conformation (Betts and Sternberg, 1999; Lo
75015 Paris Conte et al., 1999). Consequently, early rigid body dock-
France ing algorithms could redock known complexes, but they

were unable to predict them from the free components
(Kuntz et al., 1981; Goodford, 1985). The key-lock model

Summary may hold for the final protein complex, but it cannot
explain the process of recognition between the free mol-

Protein-protein association is often accompanied by ecules.
changes in receptor and ligand structure. This interplay Daniel Koshland’s (1958) induced fit model acknowl-
between protein flexibility and protein-protein recog- edges a certain plasticity of proteins and postulates a
nition is currently the largest obstacle both to our un- mutual adaptation of the two structures. It offers a valid
derstanding of and to the reliable prediction of protein description of recognition if we assume that this process
complexes. We performed two sets of molecular dy- is driven by forces that do not require good shape com-
namics simulations for the unbound receptor and li- plementarity to start with (Bosshard, 2001). However,
gand structures of 17 protein complexes and applied protein-protein recognition seems to be controlled, to
shape-driven rigid body docking to all combinations a large extent, by short-range electrostatics (Frisch et
of representative snapshots. The crossdocking of struc- al., 2001), desolvation entropy (Camacho et al., 2000),
ture ensembles increased the likelihood of finding and van der Waals interactions (Gray et al., 2003), which
near-native solutions. The free ensembles appeared all depend to various degrees on shape complementar-
to contain multiple complementary conformations. ity. Induced fit may be appropriate for describing the
These were in general not related to the bound struc- transformation of receptor and ligand after recognition
ture. We suggest that protein-protein binding follows has occurred, but it cannot explain the process of recog-
a three-step mechanism of diffusion, free conformer nition itself.
selection, and refolding. This model combines pre- A third model, conformational selection, is inspired
viously conflicting ideas and is in better agreement by the MWC mechanism of allosteric regulation (Monod
with the current data on interaction forces, time et al., 1965) and is more compatible with short-range
scales, and kinetics. interaction forces. Experimental protein structures are

only the average of many conformational states (Frau-
Introduction enfelder et al., 1991). The model postulates “recogni-

tion” conformers that are hidden in the two structure
Specific recognition between proteins is a prerequisite ensembles and select each other upon binding. Early on,
for most biological processes. Our current understand- experiments corroborated the MWC model (Kirschner et
ing of this fundamental interaction is caught in a contra- al., 1966). Later experiments on antibodies showed that,
diction: on the one hand, experimental rates of associa- in several cases, binding of an antigen was influenced
tion suggest that, in many cases, almost every collision by an equilibrium of different antibody conformations
between two partner proteins leads to the formation of (e.g., Lancet and Pecht, 1976; Foote and Milstein, 1994).
a complex (Northrup and Erickson, 1992). On the other Experimental evidence was also provided for the inverse
hand, even if we know the atomic structure of both case—the selection of antigen conformers by antibodies
proteins, we often fail to predict the structure of the (Leder et al., 1995; Berger et al., 1999). Kumar et al.
complex because the two free partners simply do not (2000) then suggested conformational selection as a
fit sufficiently well. Over the last two decades, the com- mechanism for protein-protein interaction in general. They
putational solution of this protein-protein docking prob- explicitly postulated that bound conformations of recep-
lem has been an area of intense research (reviewed by tor and ligand are part of their free structure ensembles
Halperin et al., 2002). Advances in docking methods and that recognition occurs between the two bound
often went hand in hand with new insights into the bind- conformers. Thus, recognition and (apparent) structural
ing mechanism, and the fact that we often fail to predict adaptation could be explained simultaneously. Evi-
the structure of a protein complex with confidence per- dence for a preexisting equilibrium between free and
haps mirrors our incomplete understanding of the bind- bound conformations is hard to come by. Recent experi-
ing process. mental structures are interpreted in this direction (Goh

Structures of protein complexes reveal intricate shape et al., 2004). However, upon closer examination, they
complementarity between the binding partners, which confirm the existence of distinct conformations in free
seemingly confirms Emil Fischer’s (1894) key-lock model

and bound structure ensembles, but only very few sug-
gest overlaps between the two. Since it usually leaves
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view of protein structure with a simple key-lock mecha- In this study, we examine the interplay of complete
nism for recognition. However, the model is challenged protein flexibility and protein-protein recognition. We
by the usually very fast pace of protein-protein recogni- combined two molecular dynamics-based sampling
tion, which does not leave room for many unsuccessful strategies with systematic rigid body docking. We de-
collisions (Northrup and Erickson, 1992). Recognition rived ensembles from the independently solved (un-
conformations must be frequent enough to occur simul- bound) structures of 17 receptor and 16 ligand proteins
taneously for both receptor and ligand within the short and applied shape-driven rigid body docking to all com-
time window during which they are properly aligned in binations of representative snapshots. We compared
the course of a single random collision. Northrup and the success of this extended but still manageable search
Erickson describe a protein encounter as a series of with the simple docking of the experimental structures.
microcollisions at different orientations. Estimates for We show that already very sparse structure ensembles
the length of an (possibly correctly) aligned microcolli- contained several combinations of receptor and ligand
sion range from 400 ps as the lower bound to 10 ns as conformers that generated more and better near-native
the upper bound (Northrup and Erickson, 1992; Janin, solutions. Remarkably, the docking performance of a
1997). The preexisting equilibrium hypothesis thus im- given combination of receptor and ligand structures was
plies a certain minimum frequency of bound conforma- largely uncorrelated with their similarity to the bound
tions. According to our rough estimate (see the first conformation. Based on these results, we extend and
paragraph of the Experimental Procedures), bound con- combine the up-to-now conflicting models of protein-
formations must represent 4% of both free ensembles protein binding. We suggest a three-step mechanism of
in order to achieve a 50% recognition success within a diffusion, free conformer selection, and refolding as a
400 ps time window. Even a fairly unrealistic recognition working model for flexible recognition.
time of 10 ns still requires a frequency close to 1%.

A valid model of protein-protein association needs to
Results and Discussionexplain not only the obvious difference between free

and bound protein structures, but must also be compati-
Structural Datable with kinetic data. So far, the two problems are usually
We selected a set of 17 protein-protein complexes foraddressed in isolation. The detailed theoretical studies
which the structures of both the free components andon the kinetic mechanism of binding have focused on
the complex are available (Table 1). This set is basedthe diffusion of proteins that are rigidly locked into their
on docking benchmarks from Graham Smith (Smith andbound conformation (Northrup and Erickson, 1992;
Bates, 2002) and Chen et al. (2003). From these bench-Janin, 1997; Camacho et al., 1999; Selzer and Schreiber,
marks we excluded complexes with large nonprotein2001; Zhou, 2001). These models can reproduce the
ligands to facilitate the mostly automated modeling pro-kinetics of diffusion-controlled protein-protein associa-
cedure. Only the free structures and molecular dynamicstions with some success (Gabdoulline and Wade, 2002),
ensembles derived from them were used for the rigidbut they regard structural transitions only as a passive,
body docking. The structure of receptor and ligandinduced fit after recognition has occurred.
solved as a complex served as reference.Likewise, protein-protein docking algorithms rely on

rigid body, rigid segment (Schneidman-Duhovny et al.,
2003), or rigid backbone simplifications. Several recent Measuring the Quality of Docking Solutions
programs consider alternative conformations of some We analyzed and compared 2,106,368 solutions from
or all exposed amino acid side chains (Fernandez-Recio 4,114 rigid body docking calculations between 693 con-
et al., 2003; Gray et al., 2003; and others). This strategy formations of 33 different proteins (c06 and c08 share
often improves predictions, especially in cases in which a ligand). To this end, we needed a single metric for
a few side chain rotations account for most of the differ- the quality of a given solution, i.e., to which extent it
ence between free and bound structures. It has also resembles the native arrangement of receptor and li-
spurred interest in the role of side chain flexibility for gand in the complex. Rmsd-based measures are inap-
the process of protein binding (Kimura et al., 2001). propriate for our purposes because they depend on the
However, the distinction between backbone and side size and shape of the binding interface and, furthermore,
chain dynamics is dictated by technical constraints and would also be influenced by the conformational varia-
lacks a physical basis. Side chain and backbone tor- tions in our receptor and ligand ensembles. Criteria
sions are correlated (Schrauber et al., 1993). Upon bind- based on residue-residue contacts (Mendez et al., 2003)
ing, side chain and backbone atoms are equally involved suffer from ambiguity introduced by bulky side chains
in conformational changes (Betts and Sternberg, 1999,

in the interface. We therefore used a measure based
Lo Conte et al., 1999). Furthermore, backbone confor-

on atom contacts. We define a fraction of native atom
mations also display significant variations across inde-

contacts (fnac) as the number of pairs of nonhydrogenpendently determined structures (Chothia and Lesk,
receptor and ligand atoms that are within a 10 Å distance1986), and deformations on this scale can already affect
both in the native and the predicted orientation, divideddocking results (Ehrlich et al., 2004). From this point of
by the total number of such pairs in the native complex.view, such a thing as side chain flexibility does, strictly
This value is less ambiguous and correlates better withspeaking, not exist. Therefore, recent protein-protein
rmsd-based criteria (Figure 1).docking algorithms still fail if there are substantial differ-

ences between free and bound structures. The effective
Conformational Samplingtreatment of overall protein flexibility is now the largest
Rather than by a static structure, proteins are best de-obstacle both to our understanding and to the reliable

prediction of protein-protein association. scribed by an ensemble of individual conformations
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Table 1. Protein-Protein Complexes Used in This Study

PDB Codes with Chain Identifier Size (Residues)
Contactsb Complex

IDa Receptor/Ligand Receptor Ligand Complex Receptor Ligand (Residue) Typec

c01 Trypsin/Amyloid � protein precursor 1BRA 1AAP (A) 1BRC (E:I) 223 56 82 EI
inhibitor domain

c02 �-chymotrypsinogen/Pancreatic secretory 2CGA (A) 1HPT 1CGI (E:I) 245 56 72 EI
trypsin inhibitor

c03 Kallikrein A/Pancreatic trypsin inhibitor 2PKA (AB) 5PTI 2KAI (AB:I) 232 58 49 EI
c04 Subtilisin BPN/Subtilisin inhibitor 1SUP 3SSI 2SIC (E:I) 275 108 62 EI
c05 Extracellular domain of tissue factor/ 1FGN (LH) 1BOY 1AHW 248 211 55 AA

Antibody Fab 5G9 (AB:C)
c06 Humanized anti-lysozyme Fv/Lysozyme 1BVL (AB) 3LTZ 1BVK (AB:C) 224 129 26 AA
c08 Anti-lysozyme antibody Hyhel-63/ 1DQQ (AB) 3LTZ 1DQJ (AB:C) 424 129 24 AA

Lysozyme
c11 Barnase/Barstar 1A19 (A) 1A2P (A) 1BSG (A:E) 108 89 44 EI
c13 Ribonuclease inhibitor/Ribonuclease A 2BNH 7RSA 1DFJ (E:I) 456 124 58 EI
c14 Acetylcholinesterase/Fasciculin-II 1VXR 1FSC (A) 1FSS (A:B) 532 61 53 EI
c15 HIVB-1 NEF/FYN tyrosin kinase SH3 1AVV 1SHF (A) 1AVZ (B:C) 99 59 28 O

domain
c16 Uracil-DNA glycosylase/Inhibitor 1AKZ 1UGI (A) 1UGH (E:I) 223 83 59 EI
c17 RAS activating domain/RAS 1WER 5P21 1WQ1 (R:G) 324 166 73 O
c19 Glycosyltransferase/Tendamistat 1PIF 2AIT 1BVM (P:T) 495 74 59 EI

(mdl1)
c20 CDK2 cyclin-dependent kinase 2/Cyclin A 1HCL 1VIN 1FIN (A:B) 294 252 99 O
c21 CDK2 cyclin-dependent kinase 2/KAP 1B39 (A) 1FPZ (A) 1FQ1 (A:B) 290 176 45 O
c22 Transductin Gt-�/Heteromeric G-protein 1TAG 1TBG (AE) 1GOT (A:BG) 314 408 80 O

a Complex identifier (ID) used throughout the paper (retained from www.bmm.icnet.uk/docking/systems.html).
b Number of intermolecular residue contacts calculated with a 4.5 Å cutoff.
c Complex types: EI, enzyme/inhibitor; AA, antibody/antigen; O, other.

(Frauenfelder et al., 1991). In this study, we try to incor- each were calculated with the structure embedded in a
9 Å layer of explicit water.porate the additional dimensions of receptor and ligand

variability into the picture of the protein-protein recogni- Large-scale correlated motions usually escape the
sampling of MD simulations (Balsera et al., 1996). Ation process. This recognition starts from the unbound

components, and we therefore concentrate on the con- second ensemble was calculated with an identical pro-
tocol, except a weak restraint was used to alleviateformational ensembles of the free receptor and the free

ligand. this problem. Large-scale, correlated motions typically
occur along small gradients in the energy landscape.Molecular dynamics (MD) simulations offer a way to

generate such ensembles (Frauenfelder and Leeson, They are hence slow, but, on the other hand, they can be
boosted by small interventions. As described previously1998). We performed two sets of MD simulations for

each of the 33 structures of free receptor and ligand. In (Abseher and Nilges, 2000), the restraint acts on the
ensemble of ten concurrent trajectories as a whole andthe first set, ten independent trajectories of 50 ps length
increases the variability along the major principal com-
ponents of motion. The computational cost of this princi-
pal component restrained simulation (PCR-MD) is simi-
lar to the classic approach described above, but the
ensemble is considerably more diverse.

We performed c-means fuzzy clustering for each of
the two structure ensembles and selected 2 � 10 repre-
sentative conformations for combinatorical rigid body
docking. A representative example of these discretized
structure ensembles from the unrestrained (MD) and the
restrained (PCR-MD) simulations is shown in Figure 2.
The snapshots capture considerable variation. Table 2
lists the average (rms) deviation between the members
of each docking ensemble and their distance to the free
and the bound structure. In Supplemental Tables S1 and

Figure 1. Correlation between Rmsd- and Contact-Based Docking S2 (see the Supplemental Data available with this article
Quality Criteria

online), this information is broken up into deviations of
(A and B) All 61.952 solutions from the crossdocking of 11 Barnase

backbone and side chain atoms.with 11 Barstar conformations derived from the unrestrained MD
simulation were compared to the native complex (c11) by an rmsd-
and two contact-based criteria. (A) The fraction of native atom con-

Ensemble Crossdockingtacts (fnac) is less ambiguous and correlates better with the heavy
We tried to mimic the recognition between two flexibleatom interface rmsd than (B) the traditional fraction of native residue

contacts. molecules by a combinatorical docking of all snapshots
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tions effectively depended on: (1) how well the two pro-
tein conformations matched each other geometrically
near the native orientation, (2) how tolerant this steric
match was to deviations from the optimum orientation,
and (3) how many non-native alternative orientations
with comparable geometric match existed and com-
peted with the correct arrangement.

Complementarity across Ensembles
Discrimination by shape complementarity alone is usu-
ally sufficient to predict the native arrangement of the
bound receptor and ligand. In Figure 3A, the docking
of the bound structures from c19 (Glycosyltransferase/
Tendamistat) is shown as a representative example. The
free structures, on the other hand, are generally much
less complementary. For example, the majority of top-
ranking solutions from the docking of free Glycosyltrans-
ferase and Tendamistat (Figure 3B) reproduce no, or
only few, native contacts. However, Figure 3C shows
the fnac (quality) of top-ranking solutions from the dock-
ing of the same free receptor structure against one of
the alternative inhibitor conformations from the PCR-
MD simulation. Clearly, this combination of structures
had a better geometric fit in near-native orientations. In
Figure 4A, we show the amount and quality of near-
native solutions for all crossdockings between the simu-
lation-derived ensembles of the two proteins. Several
conformer combinations performed better than the dock-
ing of the two experimental structures, both in terms of
quantity (indicated by the size of the circle) and quality

Figure 2. Receptor and Ligand Ensembles Used for the Docking
(indicated by the color). The gain was yet even moreof c20
pronounced for the crossdocking of the ensemble that

(A) The ten receptor (right) and ten ligand (left) snapshots selected
had been calculated with the PCR-MD technique (Fig-from the unrestrained simulations.
ure 4B).(B) The ten snapshots from the principle component restrained simu-

As a second example, we present similar results forlations (PCR-MD) cover a wider range of conformations. The recep-
tor and ligand snapshots have been oriented as in the native com- the complex between CDK2 and Cyclin A (c20). This
plex, but they are separated horizontally. Side chains have been complex is one of the difficult docking test cases, as
omitted for clarity. the receptor undergoes large structural changes moving

from the free to the bound state (C� displacements of
from the receptor ensemble against all snapshots from up to 20 Å). All 512 solutions from the docking of the
the ligand ensemble. Each of the docking ensembles two experimental structures have a fnac that was below
was supplemented with the free (experimental) struc- 10%. Nevertheless, as shown in Figures 4B and 4C,
ture. Using the docking program HEX (Ritchie and Kemp, there were many combinations of MD or PCR-MD snap-
2000), we performed 121 rigid body dockings for each shots that yielded better solutions, with fnac values up
complex and MD strategy. HEX represents receptor and to 30%.
ligand by a soft 3D surface skin model and calculates The results of all 17 test complexes are provided in
the volume of water that is expelled from the protein Supplemental Figure S3 and are summarized in Table
surfaces as they come together. In addition, there is a 3 and Figure 5. We selected 2 dockings each from the
penalty for steric overlap. Both terms are combined in crossdocking of MD and of PCR-MD ensembles: the one
a pseudo energy that depends solely on the atomic and that generated the single highest fnac within the 512 top-
water probe radii and is interpreted as an approximation ranking orientations, and the one with the best com-
of the desolvation and van der Waals component of promise between quantity and quality of near-native
the free energy of association. We did not employ any solutions. We quantify this “compromise” docking per-

formance with the sum of squared fnac values aboveadditional (e.g., electrostatic) potentials and dealt there-
fore only with the contribution of short-range, geometry- 10%, i.e., a simple score strongly biased toward high

fnac ranges.dependent effects to the interaction free energy. HEX
performs a systematic search over all 6 rigid body de- The crossdocking of ensemble snapshots always

found more and, in all but one case, better near-nativegrees of freedom and ranks in the order of 109 trial
orientations by this interaction energy. solutions than the docking of the free conformations

alone. There were usually several combinations of simu-From each of the 121 HEX dockings we analyzed the
512 top-ranking solutions provided by default. Since we lation snapshots, or snapshot and free structure, with

better complementarity near the native orientation. More-did not apply any clustering and there was no random
element in the search, the amount and quality of near- over, we can assume that even better fits remained hid-

den due to the fact that our docking ensembles werenative orientations within the set of top-ranking solu-
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Table 2. Average Rmsd of Structure Ensembles

MD PCR-MD Interface Rmsd to Boundc

PDB
ID Code Pairwisea Freeb Pairwisea Freeb MD PCR-MD

c01 1BRA 1.3 � 0.09 1.2 � 0.16 2.9 � 0.52 2.1 � 0.56 1.6 � 0.12 2.2 � 0.48
1AAP 1.5 � 0.21 1.4 � 0.28 2.1 � 0.35 1.7 � 0.35 1.6 � 0.26 1.6 � 0.17

c02 2CGA 1.3 � 0.08 1.2 � 0.16 2.6 � 0.41 1.9 � 0.39 3.0 � 0.08 3.4 � 0.30
1HPT 1.6 � 0.19 1.5 � 0.25 2.3 � 0.37 1.8 � 0.36 3.0 � 0.19 3.1 � 0.19

c03 2PKA 1.4 � 0.09 1.5 � 0.18 2.8 � 0.65 2.1 � 0.58 2.2 � 0.25 2.5 � 0.50
5PTI 1.5 � 0.22 1.4 � 0.29 1.9 � 0.25 1.6 � 0.33 1.6 � 0.26 1.5 � 0.21

c04 1SUP 1.3 � 0.10 1.2 � 0.18 2.8 � 0.48 2.1 � 0.48 1.5 � 0.17 2.4 � 0.45
3SSI 1.4 � 0.11 1.4 � 0.24 2.1 � 0.28 1.7 � 0.28 1.8 � 0.24 1.9 � 0.30

c05 1FGN 1.7 � 0.14 1.7 � 0.30 2.9 � 0.47 2.4 � 0.53 1.7 � 0.23 1.9 � 0.30
1BOY 1.7 � 0.12 1.6 � 0.28 2.6 � 0.40 2.1 � 0.48 1.7 � 0.18 2.0 � 0.32

c06 1BVL 1.5 � 0.09 1.4 � 0.17 2.7 � 0.46 2.1 � 0.38 1.8 � 0.19 2.2 � 0.37
3LZT 1.2 � 0.10 1.1 � 0.21 2.5 � 0.47 1.9 � 0.53 2.4 � 0.22 2.7 � 0.28

c08 1DQQ 1.5 � 0.13 1.6 � 0.29 2.6 � 0.40 2.1 � 0.47 1.5 � 0.15 1.6 � 0.18
3LZT 1.2 � 0.10 1.1 � 0.21 2.3 � 0.41 1.8 � 0.38 1.9 � 0.14 2.3 � 0.28

c11 1A2P 1.3 � 0.10 1.2 � 0.19 2.2 � 0.38 1.8 � 0.55 1.7 � 0.21 2.3 � 0.62
1A19 1.5 � 0.11 1.4 � 0.15 2.4 � 0.40 1.9 � 0.34 1.5 � 0.15 1.8 � 0.30

c13 2BNH 1.5 � 0.10 1.6 � 0.24 2.8 � 0.41 2.2 � 0.46 2.7 � 0.36 2.9 � 0.61
7RSA 1.5 � 0.13 1.4 � 0.26 2.3 � 0.38 1.9 � 0.46 1.9 � 0.22 2.4 � 0.43

c14 1VXR 1.4 � 0.07 1.4 � 0.22 3.1 � 0.58 2.3 � 0.56 2.1 � 0.24 2.5 � 0.50
1FSC 1.5 � 0.17 1.4 � 0.23 2.2 � 0.36 1.8 � 0.43 2.0 � 0.29 2.3 � 0.38

c15 1AVV 1.6 � 0.17 1.5 � 0.23 2.6 � 0.42 2.0 � 0.35 1.5 � 0.18 1.8 � 0.24
1SHF 1.5 � 0.16 1.4 � 0.22 1.8 � 0.19 1.6 � 0.23 2.0 � 0.21 2.1 � 0.19

c16 1AKZ 1.3 � 0.07 1.2 � 0.17 2.0 � 0.28 1.6 � 0.30 1.7 � 0.18 1.8 � 0.27
1UGI 1.6 � 0.18 1.4 � 0.25 2.4 � 0.40 1.8 � 0.41 1.8 � 0.14 2.1 � 0.31

c17 1WER 1.5 � 0.10 1.5 � 0.22 2.3 � 0.36 1.8 � 0.37 1.7 � 0.08 2.0 � 0.30
5P21 1.4 � 0.08 1.3 � 0.21 2.4 � 0.35 1.9 � 0.41 2.4 � 0.28 2.8 � 0.47

c19 1PIF 1.4 � 0.06 1.3 � 0.22 3.1 � 0.65 2.2 � 0.61 2.0 � 0.29 2.6 � 0.51
2AIT 1.6 � 0.15 1.6 � 0.20 2.4 � 0.33 2.1 � 0.34 2.0 � 0.16 2.1 � 0.25

c20 1HCL 1.6 � 0.12 1.5 � 0.22 2.7 � 0.40 2.0 � 0.38 7.9 � 0.19 8.0 � 0.38
1VIN 1.4 � 0.07 1.4 � 0.20 2.4 � 0.33 1.8 � 0.36 1.7 � 0.14 1.9 � 0.28

c21 1B39 1.6 � 0.11 1.4 � 0.18 2.3 � 0.39 1.9 � 0.40 5.8 � 0.16 5.8 � 0.35
1FPZ 1.6 � 0.10 1.6 � 0.23 2.4 � 0.35 2.0 � 0.35 2.4 � 0.21 2.6 � 0.31

c22 1TBG 1.6 � 0.14 1.5 � 0.22 3.4 � 0.62 2.6 � 0.58 1.6 � 0.19 2.2 � 0.44
1TAG 1.5 � 0.09 1.4 � 0.26 2.4 � 0.33 1.9 � 0.41 6.4 � 0.10 6.4 � 0.20

a Average pairwise heavy atom rmsd in Å (with standard deviation) between the ten simulation snapshots.
b Average heavy atom rmsd in Å (with standard deviation) of the ten simulation snapshots to the free structure.
c Average heavy atom rmsd (with standard deviation) of interface residues between the ten simulation snapshots and the bound structure.

artificially sparse. The insufficient shape complementar- It should be noted that the consideration of 512 solu-
tions each from 121 docking runs combined with theity between many of the free receptor and ligand pairs

could be an artifact of the rigid body or rigid backbone soft and simplistic energy function provoke a high level
of “noise,” i.e., similarities to a random orientation. Thesimplification.
evaluation of fewer solutions with more detailed energy
functions would most likely improve the discrimination.Specificity of Docking Success

For every complex, we generated ten random orienta- However, the technical (and challenging) problem of
tions that were distinct both from each other and from scoring docking solutions is not the subject of this ar-
the native orientation (no contact overlap). We reana- ticle.
lyzed all docking solutions ten times, considering each
of these random orientations as (pseudo) native refer- Recognition Conformations

Our simulations cover a time window that, at least, re-ence. This allowed us to quantify the probability that
the score of the free docking and the best score from sembles but probably exceeds the estimated duration

of a microcollision. Already, the use of multiple trajector-the ensemble docking did not occur at random (Table
3). All of the best performing conformer pairs repro- ies is expected to increase sampling by a factor of 2

(Caves et al., 1998). The fast equilibration, the methodduced the native complex better than the docking of
the free experimental structures. In 9 out of 17 cases, the of solvation, and, especially, the introduction of principle

component restraints further enhance diversity (Ab-profound enrichment of high-quality solutions from the
docking of selected conformer pairs is also specific to seher and Nilges, 2000). We did not find a global transi-

tion from free to bound interface conformation in anythe native orientation. In the remaining cases, the im-
provement is substantial but not significantly higher than of our 2 � 33 ensembles (data not shown). There was

nevertheless notable variation in the structure ensem-what would be expected for a random orientation. We
have indications that more specific results can be bles, and some conformers were necessarily closer to

the bound than others (compare Table 2). Binding couldachieved for some of the eight latter complexes if the
HEX energy function is extended with an electrostatic be promoted by such shifts toward the bound state

(Kumar et al., 2000). In Figure 6A, we relate the distanceterm.
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binding. Protein structures move on a flat energy land-
scape that probably requires milliseconds or even sec-
onds for adequate sampling (Brooks, III et al., 1988).
The time window for recognition is short by comparison
(Northrup and Erickson, 1992; Janin, 1997; Camacho et
al., 2000). Nevertheless, we often observe deviations
between the experimental free and bound structures
that can only be bridged by large-scale correlated mo-
tions, which, in turn, are unlikely to occur spontaneously
within this short recognition time.

Our extensive data show that short-range forces can
drive recognition even when this is not evident from the
free structures. Due to the simplistic energy function
used, we can only speculate that the conformations of
highest complementarity are related to actual recogni-
tion conformers. Our results nevertheless suggest that
different such conformers coexist and can be sampled
within the short window of opportunity. The crossdock-
ing of simulation-derived structure ensembles indicates
that shape-driven recognition does not, or at least not
generally, depend on systematic transitions from free
to bound structures. This allows us to refine and com-

Figure 3. Selected Docking Results for c19 bine the current models of the protein-protein binding
(A–C) Each panel shows the result of a single shape-driven rigid process.
body docking experiment. The similarity to the true complex is mea-
sured for the 512 predictions that rank highest in surface comple-
mentarity. Data are shown for (A) bound docking, (B) free docking, A Working Model of Flexible Recognition
and (C) the highest scoring of the ensemble dockings (see Table 3).

Gabdoulline and Wade (2002) recently criticized the mu-
tual inconsistency of current models for protein-protein
association. Disputed are the nature of the rate-limitingfrom the bound state of a given pair of conformers and its

performance in docking. There is no obvious correlation step (diffusion or induced fit), the shape of the associa-
tion energy landscape (broad funnel or tight channel),between similarity to the interface of the bound structure

and docking performance. This picture remained the and the mechanism of conformational changes (preex-
isting equilibrium or induced fit). Most of these inconsis-same when we expressed the distance between struc-

tures as Contact Area Difference (Abagyan and Totrov, tencies can be resolved if we describe binding as a three-
step process of diffusion, free conformer selection, and1997) (data not shown) and is therefore not an artifact

of the rmsd measure. refolding or “induced fit,” as shown in Figure 7.
Association starts with the diffusional encounter ofIn Figures 6B and 6C, we focus only on those pairs

of conformations that yielded the best docking result the two free structure ensembles (Rf and Lf), which, at
rate k1, leads to a microcollision with approximately cor-(score) for each complex. As apparent from Table 3,

the experimental structure was overrepresented among rect orientation of receptor and ligand (Rf··Lf). The life-
time of this aligned encounter complex allows for grad-these pairs, albeit only on the side of the larger binding

partner. This bias was unique to the native orientation ual desolvation, and it could, potentially, be prolonged
by random complementarities between subpopulationsand was absent from the conformer pairs with the high-

est similarity to a random reference (data not shown). of the two structure ensembles. Apart from such an
unspecific “preselection,” the structure of the two pro-Compared to the average ensemble member, experi-

mental conformations (open symbols in Figures 6B and teins is still characterized by their free conformation
ensembles. This is the point at which short-range forces6C) are also closer to the bound structure since the

ensembles were moving away from the free conforma- and internal dynamics become important for recogni-
tion. Specifically matching conformations will selecttion without systematically moving toward the bound

conformation. The short simulation time sometimes ag- each other from the free conformation ensembles of the
two proteins and form a recognition complex (Rf*Lf*).gravates the effect, as it may cause uneven sampling of

the conformational space around the starting structure. The recognition complex will quickly be stabilized by
progressive desolvation as well as short-range electro-The preference of experimental receptor structures

might be an artifact of the docking protocol being opti- static and van der Waals interactions. At this stage,
the receptor and ligand structure cannot any longer bemized for free and bound crystallographic structures

rather than simulation-derived structures, not only in considered independent. They are now moving in con-
cert through a potential that has changed from the freegeneral, but actually using the very same test com-

plexes. After excluding experimental structures from the to the bound energy landscape. The equilibration into
this new landscape requires the transition from the (free)conformations of best complementarity, no obvious

trend remains, neither to the free experimental state nor recognition conformations to the more dominant states
of the bound structure ensemble (RbLb). This is poten-to the bound state (histogram in Figures 6B and 6C).

Indeed, the systematic dependency on a single, e.g., tially a time-consuming step, depending on the distance
between the free and bound structure (or the probabilitybound, recognition conformation would impede fast
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Figure 4. Quantity and Quality of Near-Native Solutions in Four Selected Ensemble Dockings

(A–D) The crossdocking of 11 receptor and 11 ligand conformations generates 121 sets of 512 docking solutions. The amount and quality of
near-native solutions among each set is shown for the ensemble dockings of (A and B) c19 and (C and D) c20. The area of each contour is
proportional to the number of solutions (see the separate size legends). The color of a contour indicates solutions above a certain fnac value
(see the color legend). Several conformer combinations perform better than the traditional docking of the free structures.

of the recognition conformations in the context of the diffusive and conformational searches are well studied
in isolation – the former by simulations and experimentsbound energy landscape) and may be considered a fold-

ing process. on diffusion-controlled associations (Gabdoulline and
Wade, 2002), and the latter by decades of research onIn Figure 7, we attempt to give a schematic view on

the free energy profile and the forces that are involved, protein folding (Dill and Chan, 1997). Conformer selec-
tion has been observed in experiments (e.g., Lancet andand compensate each other, at the proposed stages of

protein-protein association. This reaction scheme ex- Pecht, 1976; Foote and Milstein, 1994; Leder et al., 1995;
Berger et al., 1999), and our results suggest the specifictends earlier three- and four-state models (Camacho

et al., 2000; Frisch et al., 2001; Schreiber, 2002) and recognition via a subset of free conformations. More-
over, the mechanism does not rely on the ad hoc as-combines them with the idea of conformer selection

(Monod et al., 1965; Kumar et al., 2000; Gabdoulline and sumption of preexisting bound conformations and is
compatible with the time scale and typical rates of pro-Wade, 2001). Existing four-state models (Camacho et

al., 2000; Schreiber, 2002) distinguish between the for- tein-protein association.
The scheme contains the previous models as bordermation of an unspecific (randomly aligned) encounter

complex on one side and its correct orientation on the cases among several possible kinetic regimes: if the
free energy cost of selecting matching conformers isother. For the sake of clarity, we combine these two

steps into one. The search for this correctly aligned much lower than the cost of finding the correct orienta-
tion (k1 �� k2), the model reverts to the previous three-encounter complex (Rf··Lf) was considered the rate-lim-

iting barrier in the previous models. We introduce an or four-state descriptions (with or without induced fit,
respectively) of a diffusion-controlled reaction. If, on theadditional step of free conformer selection that sepa-

rates the diffusive search for a correct orientation from other hand, we assume that recognition requires bound
conformers, the refolding barrier (III in Figure 7) would bethe conformational search for the bound state. Both
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Figure 5. Quantity and Quality of Near-Native Solutions in All Test Cases

(A and B) The amount of solutions above a certain quality (fnac) level (see color legend) is given for selected docking runs of all 17 test
complexes. Data for each complex are presented by groups of five bars. The first bar describes the free docking (512 orientations), and the
second and fourth bar show the data for all crossdockings (11 � 11 � 512 orientations). Bars three and five show the data for the best
performing conformer combination (512 orientations) from the MD and PCR-MD ensemble, respectively (see Table 3). The (A) upper plot
depicts solutions with fnac above 10%, while the (B) lower plot uses a 1% fnac threshold.

absent (k2 �� k3) and we would revert to the preexisting structure of the final complex. Less clear is whether or
not desolvation is necessary for recognition. Accordingequilibrium model. The proposed three-step model is

the general description of an interaction that can be to Camacho et al. (1999; 2000), partial desolvation is
important for the correct positioning and initial stabiliza-diffusion controlled, recognition controlled, refolding

controlled, or be influenced by a mixture of the three tion of the encounter complex. However, Frisch et al.,
(2001) measured activation entropies close to zero forrates.
the association of barnase and barstar. They hence as-
sumed that the activated complex remains mostly sol-Implications of the Model

Diffusion-controlled associations have been studied ex- vated. This discrepancy may testify to a “special” nature
of the barnase-barstar interface (featuring many chargedperimentally, and relative rates for a given system under

different conditions can in many cases be reproduced residues and structural waters). It may, on the other hand,
also result from underlying conformer recognition. Fol-by Brownian Dynamics simulations (Gabdoulline and

Wade, 2002). An issue with simulations is that associa- lowing our three-step model, recognition occurs at the
cost of conformational entropy. A low activation entropytion rates are usually overestimated, even if binding is

assumed only for orientations very close to the native. does not rule out desolvation effects but could rather
reflect a balance between conformational entropy lossGabdoulline and Wade (2001) showed that this overesti-

mation was different for five different protein complexes and solvent entropy gain. Our comparison of free and
bound MD simulations shows that bound structure en-and concluded that association can be influenced

by nondiffusive effects. For the binding of fasciculin-II sembles are not generally less diverse than free ones
(unpublished data). One can hence speculate that theto acetylcholinesterase in particular, they suggested a

mechanism of “conformal gating” by two distinct confor- refolding phase of binding is accompanied by the regain
of conformational entropy. A mixed control by diffusionmations of a loop. Our working model of diffusion, selec-

tion, and refolding offers a similar, more general expla- and recognition implies a structurally constrained transi-
tion state ensemble that is close to the bound orientationnation. The recognition barrier (barrier II in Figure 7)

differs from the free energy of the encounter complex on the one hand, but resembles the two free conforma-
tions on the other hand.ensemble Rf··Lf by a loss of conformational entropy be-

cause it can only be crossed by a subset of free confor-
mations. A mixed control by diffusion and recognition Implications for Predictive Docking

The idea to use pregenerated conformer libraries of re-should lower observed association rates by a systematic
factor (related to the frequency of recognition conform- ceptor or ligand has been implemented for the docking

of small molecules against proteins for some time (re-ers), as described by Gabdoullin and Wade. Predomi-
nant control by recognition and/or refolding, on the other viewed by Brooijmans and Kuntz, 2003). For predic-

tive protein-protein docking, similar strategies are nowhand, would uncouple the observed rate from conditions
like ionic strength, charge, and viscosity; this uncoupling being tested in many labs. Multiple MD simulations

enhanced by principal component restraints are a prom-was demonstrated for another of the tested complexes.
The three-step model also helps to refine our descrip- ising technique for sampling relevant structure ensem-

bles. The application of conformers from such simula-tion of the transition state ensemble(s) in protein-protein
association. Both theoretical (Janin, 1997; Camacho et tions of the free ensemble could be a viable strategy to

account for protein flexibility in protein-protein docking.al., 2000) and experimental studies (Frisch et al., 2001)
conclude that the transition state closely resembles the Ensemble crossdocking appears to rather increase the
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Figure 7. A Working Model for Flexible Protein Recognition

Protein-protein association may be governed by diffusion, selection
of matching conformers, and refolding. Rf and Lf are the free struc-
ture ensembles of receptor and ligand, respectively. R*f and L*f

are subsets of the free receptor and ligand ensembles (recognition
conformers). The middle and lower sections of the figure suggest,
schematically, the forces involved at the different stages and the
resulting free energy profile. The widths and barrier heights are not
meant to reflect real proportions.

Figure 6. Docking Performance and Structural Changes in the In-
terface

(A) The combined distance of the receptor and ligand interface protein-protein associations. We propose that protein-
regions from their respective bound conformation is expressed as protein binding follows a three-step mechanism of diffu-
(rmsdrec � rmsdlig)/2 and is plotted against the pair’s docking perfor- sion, free conformer selection, and refolding. This work-
mance. Both values are given relative to the docking of the free

ing model is an extension and combination of earlierconformation pair. Data are shown for each combination of receptor
ideas and models. In particular, we mix and generalizeand ligand conformers (11 � 11 � 34). A solid line describes the
the previously conflicting mechanisms of diffusion-con-distribution of rmsd values (distances to the bound structure).

(B and C) Only the best-performing pair of each ensemble docking trolled binding with passive induced fit on the one hand,
are shown. The rmsd of the receptor (triangle) and ligand (square) and the recognition via preexisting conformations on
interface to the (B) free and to the (C) bound structure is given the other. The combined mechanism appears to be con-
relative to the respective average value of the ten simulation-derived

sistent with current data from simulations and experi-conformers. High-performing conformations seem to be shifted both
ments on protein-protein association. However, most oftoward the bound and the free structure. This trend is largely caused
these studies have so far focused on diffusion-con-by free (experimental) structures (open symbols) that are overrepre-

sented on the receptor side of high-performing conformer pairs. trolled interactions without large changes in protein
Free structures are excluded from the distribution of rmsd shifts structure. It is now time to move on to systems in which
(solid lines). association could be dominated by the selection of

matching conformers and in which recognition is either
depending on or followed by large-scale structural rear-challenge to identify a correct orientation within the large
rangements.number of false ones – an issue that we do not address

in this paper. However, compared to classic, single, rigid
Experimental Proceduresbody docking, ensemble docking generates many more

solutions with (by comparison) excellent shape comple- Minimum Frequency of Recognition Conformations
mentarity. Therefore, it is possible to refine and evaluate According to the preexisting equilibrium model, protein recognition

relies on the simultaneous occurrence of bound conformations bothcandidate orientations with more accurate energy func-
in receptor and ligand ensembles. The recognition probability, R,tions that are less forgiving to steric clashes and other
of a correctly aligned microcollision should depend on the averageartifacts which otherwise have to be tolerated.
frequencies, �fr�, of recognition conformations in the free ensem-
bles. The probability of recognition failure can be estimated as:

Conclusion
1 � R 	 (1 � �fr�2)N,We here examined the impact of overall protein flexibility

on protein-protein recognition. The crossdocking of en-
where N is the number of distinct conformations sampled in the

semble snapshots derived from MD simulations of the course of the correct alignment. The frequency of recognition con-
two partner proteins increases the chances to find near- formations that is needed for a certain recognition rate is then
native solutions. There appear to exist multiple comple-
mentary conformations within the free structure ensem- �fr� 	 �1 � exp�ln(1 � R)

N ��
1⁄2

,
bles. Our results suggest that recognition does not
depend on the bound structure, and such a dependence where N depends on the lifetime, 
 , of the alignment and on our

definition of distinct conformations. The short recognition time willwould also be inconsistent with the time scale of typical
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only allow for fairly limited sampling in the flat energy landscape of quest). We removed all orientations having any atom contact in
common with the native complex (fnac � 0) and performed a hierar-protein structures. For the sake of simplicity, we assume that N

depends linearily on the recognition time, 
 , and that the “recogniz- chical clustering by the pairwise overlap of atom contacts. The
clustering will be described in detail elsewhere. For the presentability” of a given protein structure changes every 1 ps (N � 
 ps�1).

We thus arrive at the estimates given in the introduction. purpose, we applied a clustering threshold of 0.0001 and obtained
a set of cluster centers without mutual contact overlap. We selected
ten at random and recalculated the “fnac” of all HEX solutions withConformational Sampling
respect to each of the ten random complexes. From these values,Simulations were performed with a modified version of X-PLOR
we estimated the probability of the score (for reproducing the native(Brünger, 1992; Abseher and Nilges, 2000) by using the CHARMM19
complex) being a random observation (details are on page S4 offorce field (Brooks et al., 1983) and an electrostatic cutoff of 12 Å
the Supplemental Data). The necessary random distribution cannotwith force shifting (Steinbach et al., 1991).
be deduced from ten values. However, score values were by defini-The coordinates of the 51 molecules (Table 1) were retrieved
tion positive and usually small. A lognormal distribution was hencefrom the Protein Data Bank (Berman et al., 2002). An automated
the least biased assumption.procedure removed duplicate peptide chains and all hetero atoms

(but not waters), converted nonstandard amino acids to their closest
Analysis of Docking Resultsstandard residue, and identified disulfide bonds. Missing atoms,
All atoms not present in both free and bound receptor or ligandincluding polar hydrogens, were added and briefly minimized. The
structures were removed before performing the analysis. The inter-protein was surrounded by a 9 Å layer of TIP3 water molecules, and
action interface was defined as any residue with any atom withinthe solvent was briefly equilibrated. Ten copies were the starting
4.5 Å from the other molecule. Calculations (docking and analysis)point for parallel simulations of 50 ps length, summing up to 500 ps
were distributed to between 30 and 90 processors of a Linux cluster.total simulation time per system. SHAKE constraints (van Gunsteren
The total computation time for this study amounts to about 8 yearsand Berendsen, 1977) were put on all bonds to hydrogens and on
on a single 2.4 GHz processor.all TIP3 waters. Each copy was heated from 100–300 K in 50 K

steps of 1 ps each, followed by additional 5 ps of equilibration with
Figurescontinued reassignment of velocities every 1 ps. The temperature
Figure 1 was prepared with MOLMOL (Koradi et al., 1996). Figureswas kept constant by explicit coupling to a heat bath via Langevin
2–4 were created with Biggles (biggles.sourceforge.net), and Fig-dynamics and a friction coefficient of 20 ps�1 for water oxygens
ures 5 and 6 were created with IgorPro (www.wavemetrics.com).and between 0.5 and 5.5 ps�1 for protein atoms, dependent on their

solvent accessible area. A time step of 2 fs was used. The simulation
Supplemental Datascripts are available upon request.
Supplemental Data including a figure showing the complementarityA second set of simulations was performed with identical setup
between all test ensembles, two tables with information on the vari-but by adding an additional force onto the potential acting along
ance of structure ensembles, and a section describing the calcula-the principle components of motion, basically as described by Ab-
tion of docking specificity are available at http://www.structure.org/seher and Nilges (2000). In difference to the published method, we
cgi/content/full/12/12/2125/DC1/.redefined the principal components iteratively during the calcula-

tion. Details will be published elsewhere.
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